
CAN Communications Protocol

For MGL Avionics CAN bus devices

Release 8 4th of February 2015

MGL CAN Bus
MGL CAN bus devices operate using standard CAN bus protocol at 250KBaud. Please
note that no devices include any bus termination resistors. These are to be fitted
externally. For typical, short run connections, it is quite reasonable to install a single
resistor at the host side of a value of 60 to 120 ohms. The CAN bus cannot work without
this resistor. Standard CAN wiring demands a twisted pair cable run with a 120 ohm
resistor terminating each side. Devices are connected to this bus using short stubs.

Multiple devices on one CAN Bus
Multiple CAN devices can be connected to a single CAN bus.

Each CAN devices must have a unique address on the bus. MGL Devices have a fixed
address or address range in case more than one device of the same type is to be
connected (for example RDACs).
In case of multiple devices of the same type addresses within the devices range are
assigned either by dip switches or via a specific command on the CAN bus (this is for
example used on the AHRS devices).

In case of CAN bus servos you the process involves connecting a single servo to the CAN
bus and then sending the identification message containing the desired servo number (1-
16).
Once the servo has been identified, it retains this identification for future use until changed
by a new identification message.

MGL CAN Addressing
Addresses are 11 bits and identify the message source. Lower 4 bits are used as message
type ID, upper 7 bits are device address where a single node may have more than one
device address to identify logical function blocks.

In this document, “CAN address” of a device refers to the upper 7 bits of the native CAN
address. The lower 4 bits is the “ID” or function of the message allowing up to 16 message
types to be sent to each device.

The Host logical device shall be device address 1 to 15. Address 0 is reserved for future
use.
Currently, only host address 1 is utilized. Other host addresses are reserved and will be
used as the number of different CAN messages needed to be sent to various devices
increases. In a typical system, there is only one physical host active at any one time (more
than one may be connected but only one will address devices, I.e. send data). Devices
never send data directly to another device as this would imply two (or more) nodes on the
CAN bus potentially using the same CAN address in a message and this is not allowed.
However devices can of course receive data from other devices when it is transmitted.

Servos will occupy addresses 16-31. The address for the Compass / SP6 is the SP6
number - 1+36. The address for the AHRS / SP7 is the SP7 number – 1+40 and so on.

The complete address range for all current MGL CAN bus devices:

Master/Host: 1-15 (this range of addresses are used by the EFIS or other host to send
messages to devices).
Servos: 16 – 31 (selected by software command)
RDAC: 32 – 35 (max 4 RDAC units per bus – selected by dipswitch)
Compass: 36 – 39 (max 4 Compass units per bus, selected by software command)
AHRS: 40 – 43 (max 4 AHRS units per bus, selected by software command)
Transponder 44 -- 45 (max 2 transponders per bus, selected by software command)
Reserved: 46 – 47
SP10: 48 – 51 (4 addresses determined by function – selected by dipswitch)
ECB: 52 – 59 (up to 8 x 8 breakers, selected by dipswitch)
TouchPad: 60 – 63 (up to 4 touch pads, selected by software command)
EFIS Extender: 64-67 (up to 4 extenders, selected by software command)

RDAC XF uses two dip switches to set the CAN address.
 SEL
B A
off off – Address 32
off on – Address 33
on off – Address 34
on on – Address 35

RDAC are always assigned addresses from 32. If one RDAC is used, address 32 is used.
If two RDACs are used, address 32 and 33 are used and so on...

ECB uses DIP switches 1,2,3 to set CAN bus address from 52 to 59 (8 address slots).

Messages from Host (EFIS) to devices

Message: Host Sets SP-6/7/9 Device ID Number

Message ID: 5 Data length: 4 bytes

Byte Type Range / Value Units Description

0 CONST 0xAA - Set Code

1 CONST 0x55 - -

2 Byte 32 ... 43 - SP6/7/9 number (1...4)

3 Byte Byte 2 XOR 0xFF - -

Activates the device ID as specified in data Byte 2. Example: if this messages is sent to
Device ID 37, the device will broadcast Compass 2 data. Each device can only transmit
one group of data – in other words one device will not report data as Compass 1 and
Compass 2. Some devices (example SP-7) can report multiple groups of data. In the case
of the SP-7 it can report Compass and AHRS data.

Sending a number outside of the valid range has no effect.

Message: Host Broadcasts Aircraft Speed & Attitude

Message ID: 2 Data length: 8 bytes

Byte Type Range / Value Units Description

0...1 sint -1800-1800 0.1 deg AHRS Bank angle

2...3 sint -900-900 0.1 deg AHRS Pitch angle

4...5 sint 0..3599 0.1 deg AHRS YAW angle

6...7 word 0...1000 mph Ground Speed (TAS if No GPS)

This message is sent at a rate higher or same to 1 per 500mS. It contains either TAS or
GPS ground speed as determined by the connected system.

If AHRS angles are not known, values are to be set to $7FFF. These angles are mainly
used by the SP-6 to compensate the magnetometer readings for the aircraft's attitude.

Message: Command to SP7/SP9 AHRS

Message ID: 3 Data length: 1-7

Byte Type Range / Value Units Description

0 byte 0-255 Command

1...7 Optional data

Only one command is defined at this point.:
0: Set Gyro derived horizon to that given by the accelerometers. No data.

Message: Command to SP6 Compass

Message ID: 4 Data length: 1-6

Byte Type Range / Value Units Description

0 byte 0-255 Command

1 byte 0-255 Command (repeat)

2...7 Optional data

Commands defined
0: Set North
1: Set South
2: Set East
3: Set West
4: Clear alignment
5: Start deviation calibration
6: End deviation mode and keep result
7: Cancel deviation mode (does not keep result)
8: Restore factory settings (clears above calibrations)
9: Operation mode. Note: only values 2 and 4 are supported = ACEL 3D and EFIS 3D

Note: EFIS 3D mode uses the EFIS to calculate alignments and 3D compensation. In this
mode only raw data is of relevance to the EFIS.

None of the commands has any data

Message: Command to Motor control unit

Message ID: 8 Data length: 1-8

Byte Type Range / Value Units Description

0 byte 0-255 Command

1 byte 0-255 Command (repeat)

2...7 Optional data

This sends a message to a Flap/Trim/Motor controller. Note: The function of the controller
unit is programmed by means of a DIP switch array in the controller itself. Messages sent
must match the function of the controller. Multiple controllers with different function
assignments can be used on the same CAN address.

Commands defined:
0: Set position, Flap motor.
 Position 0-4095, two bytes LSB first.
 Motor direction: 0 or 1
 Timeout: 0-255. Steps of 100mS. 0=No timeout.
 Power: 0-255
1: Set position, Pitch trim. Data as above.
2: Set position, Bank trim. Data as above.
3: Reserved

4: Pulse Flap motor
 Time: 0-255 for 0-2.55 seconds
 Direction: 0 or 1
 Power: 0-255
5: Pulse Pitch trim motor
 Time: 0-255 for 0-2.55 seconds
 Direction: 0 or 1
 Power: 0-255
6: Pulse Bank trim motor
 Time: 0-255 for 0-2.55 seconds
 Direction: 0 or 1
 Power: 0-255
7: Reserved
8: Setup. D2 is setup item, optional data follows at D3

0 – Flaps up position 0-4095. D3 LSB ,D4 MSB
1 – Flaps mid1 position 0-4095. D3 LSB ,D4 MSB
2 – Flaps mid2 position 0-4095. D3 LSB ,D4 MSB
3 – Flaps down position 0-4095. D3 LSB ,D4 MSB
4 – Pitch up position 0-4095. D3 LSB ,D4 MSB
5 – Pitch neutral position 0-4095. D3 LSB ,D4 MSB
6 – Pitch down position 0-4095. D3 LSB ,D4 MSB
7 – Roll right position 0-4095. D3 LSB ,D4 MSB
8 – Roll neutral position 0-4095. D3 LSB ,D4 MSB
9 – Roll left position 0-4095. D3 LSB ,D4 MSB
10 – Flaps motor timeout. 0-255. D3
11 – Flaps motor force. 0-255. D3
12 – Flaps motor DIR. 0-255. D3
13 – Pitch motor timeout. 0-255. D3
14 – Pitch motor force. 0-255. D3
15 – Pitch motor DIR. 0-255. D3
16 – Roll motor timeout. 0-255. D3
17 – Roll motor force. 0-255. D3
18 – Roll motor DIR. 0-255. D3
19 – Request setup data

Note: If any setup message is received, it will trigger a transmission of setup data identical
to setup request 19.
9: Set to stored position

D2=0 Flaps to position in D3 – 0,1,2,3 = up,mid1,mid2,down
D2=1 Pitch to position in D3 – 0,1,2 = up,neutral,down
D2=2 Roll to position in D3 – 0,1,2 = right,neutral,left

Note: This message is usually only used for Flaps.

Message: General Command

Message ID: 9 Data length: 1-8

Byte Type Range / Value Units Description

0 byte 0-255 Destination

1 byte 0-255 Command

2...7 Optional data

Used for mode or calibration settings and other general commands to devices.

This message exists in RDAC firmware from 29th October 2013 onwards
Destination 0-3 is RDAC 1,2,3,4
Destination 8-15 is ECB 1,2,3,4,5,6,7,8

If destination is RDAC:
Command:
$81: Request calibration data
$82: Set Ambient calibration in following two bytes
$83: Set TC calibration in following two bytes
$84: Set analog calibration in following two bytes
$85: Set MAP calibration in following two bytes
$86: Set volt meter calibration in following two bytes
$A0: Write calibration to flash memory (store permanent)

If destination is ECB:
Command:
$00: Set breaker current trip level in steps of 0.1A.
 Data[2] = breaker ID, 0 = breaker 1
 Data[3],Data[4] = Trip current (LSB/MSB)
$01: Set breaker trip speed in steps of 0.1 seconds. Range 0 – 2.0 seconds.
 Data[2] = breaker ID, 0 = breaker 1
 Data[3] = trip time
$02: WIGWAG state. If one or two breakers are configured as WIG/WAG then this
 command witches the breaker into and out of WIGWAG mode.
 Data[2] = 0 – WIGWAG off. 1 – WIGWAG on.
$03: WIGWAG time.
 Data[2] = WIGWAG time in 0.1S steps. Default is 0.5 seconds = value 5.
$04: Breaker ON/OFF
 For systems that are have hardwired “ON” breakers, this command switches breakers
 ON and OFF. It is also used to reset a tripped breaker by attempting to switch it ON.
 Data[2] = breaker ID, 0 = breaker 1
 Data[3] = 0 - breaker OFF, 1 – breaker ON (Reset).
$05: Request setup.
 Sends setup packets as described under ECB to EFIS messages.

Note: 8 breakers per ECB module. Numbered 0-7. If breakers are paralleled, then
switching either of the doubled breakers automatically switches the other as well.
Current limits apply for total current in case of a doubled breaker. The ECB will halve the
received trip current setting and apply this to each of the doubled breakers. It is OK to
send the total trip current for just one of the doubled breakers.
Breakers can be doubled, tripled and quaded.
Trip times specify the trip time at trip current level. At higher levels, trip times are
automatically reduced so to simulate a traditional breakers behaviour. In case of doubled
breakers, it is OK to send the trip time for just one of them (the same time will be applied to
the other).

ECB operating details are mostly selected by means of the DIPSWITCH array on the
breaker itself.

Message: EFIS Extender command

Message ID: 10,11,12,13 Data length: variable

Byte Type Range / Value Units Description

0 byte Type

1...7 byte Data depends on type

Type 0 – set outputs. Place output value as bit pattern in bits 0..4 of byte 1. Length of
message 2 bytes. “1” means switch output on (open collector output switched to ground).

Type 1,2,3,4,5 – Setup RS232 port 1,2,3,4,5

Bytes 1,2,3 – LSB first: Desired baud rate
Byte 4 – Bits 0..1 =Stop bits 0=0.5 1=1 2=1.5 3=2

 Bits 2..3 =Parity 0=none, 1=even, 2=odd
 Bits 4..7 =Data bits. (use “8”, only 8 bits supported)

Byte 5 – RX Timeout in increments of 250uS, 63.750mS max timeout = 255
Byte 6 – Threshold, number of bytes in buffer before TX of this data (unless timeout)

The port will receive data. If the timeout value since the last byte has been exceeded the
data in the buffer will be sent (if any). If the threshold (number of bytes) has been
exceeded, data will also be sent. It is recommended to use a threshold of 8 as this is the
maximum size of data payload in a CAN package.

Type 6 – Set address

Place the value 0,1,2 or 3 in byte 1 and the same value XOR'ed with 0xFF in byte 2 to set
the CAN sub address for this extender. This will set the CAN device address to 64,65,66 or
67. This implies that only one extender module may be connected at any one time as the
addresses are set. This setting is stored in non-volatile memory and applies immediately.

Type 7,8,9,10,11 – TX data to a RS232 port

Place the data to be transmitted in bytes 1 to 7. This implies you can send between 1 and
7 bytes per CAN message.

Note: The extender module has a buffer of 256 bytes for each RS232 port and 1024 bytes
for each RX port. Please keep this in mind, if you send more data as can be sent by the
port given the ports baudrate and buffer size you will cause data to be lost.

Note: The CAN messages for the Extender documented here are never used in a MGL
EFIS environment as the extender will connect to an EFIS using a dedicated high speed
serial link. These messages are documented here for third party use. The CAN ports on
the extender module are normally addressed via the high speed serial link and send and
receive data as per normal EFIS operation. CAN addresses have nevertheless been
chosen to be compatible with the MGL CAN system even if this is not strictly required.

If the Extender receives message type 0 (“set outputs”) addressed to it on any of its CAN
ports (addresses 64-67) then it immediately switches into a mode where both CAN ports
are dedicated ONLY to the messages documented here and the high speed data link is
disabled. If this message is not sent, then the Extender will not send any of the messages
documented or react on any of these messages. The default behaviour passes any CAN
messages received to and from the high speed data link to the EFIS.

Message ID 10,11,12,13 corresponds to addressing extender CAN address 64,65,66,67

Messages from devices to Host (EFIS)

SP-7 Accelerometer Data

The SP-7 will transmit the Accelerometer Data message 20 times per second. This is a
default message format that all Stratomaster instruments expect. This message will be
sent unconditionally.

Message: SP-7 (AHRS) Broadcasts Accelerometer Data

Message ID: 1 Data length: 8 bytes

Byte Type Range / Value Units Description

0...1 int - 32000... +32000 1/1000 G Scaled Accelerometer X

2...3 int - 32000... +32000 1/1000 G Scaled Accelerometer Y

4...5 int - 32000... +32000 1/1000 G Scaled Accelerometer Z

6...7 int -32000... +32000 1/1000 G Total G

SP-7 Gyro Rate

The SP-7 will transmit the Gyro Heading and Turn Rate message 20 times per second.
This is a default message format that all Stratomaster instruments expect. This message
will be sent unconditionally.

Message: SP-7 (AHRS) Gyro rates

Message ID: 2 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 sint -60...60 0.1deg/m Turn Rate

2...3 sint -32768-32768 * Bank Rate

4...5 byte -32768-32768 * Pitch Rate

6...7 version -32768-32768 * Yaw Rate

*) Bank, Pitch and Yaw rates are scaled such that 360 degrees/second = 16384 giving a
resolution of 0.022 degrees/second

SP-6 Heading and Raw Magnetometer Data

The SP-6 will transmit the Heading & Raw Magnetometer Data message 20 times per
second. This is a default message format that all Stratomaster instruments expect. This
message will be sent unconditionally.

Raw mag readings are unsigned 12 bit numbers with the value 2048 equal to zero field
strength. Numbers are little endian and packed.

Message: SP-6 (Compass) Broadcasts Heading & Raw Magnetometer Data

Message ID: 1 Data length: 8 bytes

Byte Type Range / Value Units Description

0...1 12 bits 0...35999 1/100deg Magnetic Heading

2...3.5 12 bits 0...4095 - Corrected Raw Magnetometer X

3.5...5.0 12 bits 0...4095 - Corrected Raw Magnetometer Y

5.0...6.5 12 bits 0...4095 - Corrected Raw Magnetometer Z

7 byte -128..127 Slip angle (ball position)

SP-6 Data sent during active deviation calibration

The SP-6 will send three CAN packets at intervals during calibration.

Message: SP-6 (Compass) Deviation compensation data packet 1

Message ID: 2 Data length: 8 bytes

Byte Type Range / Value Units Description

0...1 word 0...65536 - Maximum EW reading

2...3 word 0...65535 - Minimum EW reading

4...5 word 0...65535 - Maximum NS reading

6...7 word 0...65535 - Minimum NS reading

Message: SP-6 (Compass) Deviation compensation data packet 2

Message ID: 2 Data length: 8 bytes

Byte Type Range / Value Units Description

0...1 word 0...65536 - EW current reading

2...3 word 0...65535 - NS current reading

4...5 word 0...65535 - Maximum Z axis reading

6...7 word 0...65535 - Minimum Z axis reading

Message: SP-6 (Compass) Deviation compensation data packet 3

Message ID: 2 Data length: 2 bytes

Byte Type Range / Value Units Description

0...1 word 0...65536 - Z axis current reading

SP-7 Euler Attitude

The SP-7 will broadcast the Euler Attitude message 20 times per second. This is a default
message format that all Stratomaster instruments expect. This message will be sent
unconditionally.

Message: SP7 (AHRS) Broadcasts Euler Attitude (Absolute Attitude)

Message ID: 3 Data length: 8 bytes

Byte Type Range / Value Units Description

0...1 int -17999 ... +18000 1/100 deg Euler Roll / Bank

2...3 int -9000 ... +9000 1/100 deg Euler Pitch

4...5 int -17999 ... +18000 1/100 deg Euler Yaw

6 byte -50...50 - Slip

7 bit 0 0 = accelerometer mode, 1 = gyro mode

bit 1 1 = SP-7 is in over range mode (gyro maximum rate exceeded)

bit 2 1 = SP-7 is at operating temperature (no longer used)

bit 3...4 Reserved

bit 5...7 000 = Unidentified AHRS, 001 = SP-7, Else reserved.

An Euler Bank/Pitch/Yaw angle value of -9000 should be interpreted as -90.00 deg.

Gyro mode implies that the accelerometer corrections are not being applied. This mode is
typically engaged when high rotation rates are being sensed. Accelerometer mode implies
that the non-linear complimentary filters are being applied to the data (gravity vector is
being used to correct/erect the horizon) – typically when the rotation rates are low. In both
modes the measurements for the rate gyroscopes are being used to propagate the
quaternion state vector.

RDAC XF messages

Note: If you are implementing a third party RDAC, please note that message timings are
critical and must be exactly as shown (+/-10% variation is acceptable).
Messages ID 2-7 are collated at the iBOX into a single message that is sent over the iEFIS
LAN. All of these messages must be created even if you are not using some of the
contents. You must create all messages and send at the specified rates. It is
recommended to send messages 2-7 as a single batch, one after the other (order does not
matter) every 500 mS to reduce lag. Messages 2-7 contain data that does not change fast.

RDAC XF Message ID 1

Message: RDAC XF Message

Message ID: 1 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 word 0-65536 Fuel flow 1 pulse count

2...3 word 0-65536 Fuel flow 1 pulse ratio

4...5 word 0-65536 Fuel flow 2 pulse count

6...8 word 0-65536 Fuel flow 2 pulse ratio

This message is sent every 4 seconds. Counts are totals over last 4 second period. Ratio
is a number related to 1000 = 100.0%. For example: 400 = 60.0/40.0% ratio. No pulse
detected = 65536.

RDAC XF Message ID 2

Message: RDAC XF Message

Message ID: 2 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 sint deg C TC 1

2...3 sint deg C TC 2

4...5 sint deg C TC 3

6...8 sint deg C TC 4

This message is sent every 500mS.

Uncompensated thermocouple voltage scaled to degrees C based on K-Type probe.
Linear measurement. Probe voltage 24.9mV = 600 degrees C.
Add Temperature from message ID 7 after any conversion to other probe types to derive
cold junction compensated temperature.

RDAC XF Message ID 3

Message: RDAC XF Message

Message ID: 3 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 sint deg C TC 5

2...3 sint deg C TC 6

4...5 sint deg C TC 7

6...8 sint deg C TC 8

This message is sent every 500mS.

Uncompensated thermocouple voltage scaled to degrees C based on K-Type probe.
Linear measurement. Probe voltage 24.9mV = 600 degrees C.
Add Temperature from message ID 7 after any conversion to other probe types to derive
cold junction compensated temperature.

RDAC XF Message ID 4

Message: RDAC XF Message

Message ID: 4 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 sint deg C TC 9

2...3 sint deg C TC 10

4...5 sint deg C TC 11

6...8 sint deg C TC 12

This message is sent every 500mS.

Uncompensated thermocouple voltage scaled to degrees C based on K-Type probe.
Linear measurement. Probe voltage 24.9mV = 600 degrees C.
Add Temperature from message ID 7 after any conversion to other probe types to derive
cold junction compensated temperature.

RDAC XF Message ID 5

Message: RDAC XF Message

Message ID: 5 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 word 0-4095 OILT

2...3 word 0-4095 OILP

4...5 word 0-4095 AUX1

6...8 word 0-4095 AUX2

This message is sent every 500mS.

RAW ADC readings. Conversion to final value is up to equipment.

RDAC XF Message ID 6

Message: RDAC XF Message

Message ID: 6 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 word 0-4095 FUELP

2...3 word 0-4095 COOLANT

4...5 word 0-4095 FUELLEVEL1

6...7 word 0-4095 FUELLEVEL2

This message is sent every 500mS.

RAW ADC readings. Conversion to final value is up to equipment.

RDAC XF Message ID 7

Message: RDAC XF Message

Message ID: 7 Data length: 4 bytes

Byte Type Range / Value Units Description

0..1 sint deg C Temperature

2...3 word See formula below RDAC supply Voltage

4...8 word Not used

This message is sent every 500mS.

//Pascal function to return voltage in 0.1V steps

function ToVolts(v: word): string;
begin
 result:=IntToStr(round(v/5.73758));
 if length(result)=1 then result:='0'+result;
 Insert('.',result,length(result));
end;

RDAC XF Message ID 8

Message: RDAC XF Message

Message ID: 8 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 word RPM1

2...3 word RPM2

4...5 word 0-4095 MAP

6...8 word 0-4095 CURRENT

This message is sent every 200mS.

RPM1 and RPM2 is RPM based on 1 pulse per revolution.
if number is >=50000, value is scaled to RPM*10. Example: 51000 = 60000 RPM
Scaled 10 readings are normally used with turbine engines.

MAP and Current are RAW ADC readings. Conversion to final value is up to equipment.

RDAC XF Message ID 9
Note: This message exists in firmware from 29th October 2013 onwards

Message: RDAC XF Message

Message ID: 9 Data length: 8 bytes

Byte Type Range / Value Units Description

0 byte ID

1 byte Spare

2...3 word V1

4...5 word V2

6...8 word V3

Answer to request for calibration. Two IDs are used, 0 and 1.
ID 0
V1 – Ambient
V2 – TC
V3 – Analog
ID 1
V1 – MAP
V2 - VOLT

Flap and Trim controller

Setup 1 to Setup 4 messages must be requested by Host.
It is recommended for the host to request the setup from the SP10 rather than retain its
own settings. It is possible for multiple control units (EFIS or other) to control a single
SP10. Setups will be transmitted if they are changed. The setups tend to be required in
order to draw current positions in graphic displays.
Status message is sent at maximum interval of 1 second or if data has changed at
minimum interval of 0.2 seconds.

Message: Setup 1

Message ID: 1 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 word 0-4095 FlapsUp

2...3 word 0-4095 FlapsMid1

4...5 word 0-4095 FlapsMid2

6...8 word 0-4095 FlapsDown

Message: Setup 2

Message ID: 2 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 word 0-4095 PitchUp

2...3 word 0-4095 PitchNeutral

4...5 word 0-4095 PitchDown

6...8 word 0-4095 RollRight

Message: Setup 3

Message ID: 3 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 word 0-4095 RollNeutral

2...3 word 0-4095 RollLeft

4 byte 0-255 FlapsMotorTimeout

5 byte 0-255 FlapsMotorDir

6 byte 0-255 FlapsMotorForce

7 byte 0-255 PitchMotorTimeout

Message: Setup 4

Message ID: 4 Data length: 5 bytes

Byte Type Range / Value Units Description

0 byte 0-255 PitchMotorDir

1 byte 0-255 PitchMotorForce

2 byte 0-255 RollMotorTimeout

3 byte 0-255 RollMotorDir

4 byte 0-255 RollMotorForce

5 byte 0-255 PitchMotorTimeout

Message: Status

Message ID: 0 Data length: 8 bytes

Byte Type Range / Value Units Description

0 byte Motor 1 function

1 byte Motor 1 flags

2...3 word 0-4095 Motor 1 position

4 byte Motor 2 function

5 byte Motor 2 flags

6 word 0-4095 Motor 2 position

Motor function byte:
0 – Flaps
1 – Pitch trim
2 – Roll trim
3,4,5 – Various gear
0xFF – No function assigned

Motor Flags byte:
Bit 0 – Set if motor ON
Bits 1,2,3 – Last flaps position command (Bits used only for Flaps motor)
 000 – Last command is up or down pulse

001 – Flaps up
010 – Flaps Mid1
011 – Flaps Mid2
100 – Flaps Down

EFIS to Transponder messages

Note: If two transponders are fitted, these messages will be seen by both transponders,
each transponder has its own reply HOST address.

Message: EFIS to Transponder Message (HOST address 1)

Message ID: 5 Data length: 8 bytes

Byte Type Range / Value Units Description

0..5 char See below Aircraft ID

6...7 sint See below Baro Altitude

This message must be send once per second. The transponder will be set to “OFF” or
“Standby” state if this message is not received for 4 seconds.

Aircraft ID contains 8 consecutive characters coded by 6 bits each;
only capital letters A..Z, whitespace ' ' and numbers 0..9 are allowed
coding:
'A' = 0x01, ..., 'Z' = 0x1A, space = 0x20, '0' = 0x30, ..., '9' = 0x39
The eight resulting 6-bit numbers are concatenated into one big bitstring
and then split into six 8-bit chunks (bytes) for transmission
AID = aircraft ID, i.e. aircraft registration (e.g. N82381) or flight number
(e.g. UAL409), in the same format (without leading spaces, dashes, etc.) as
used on the filed flight plan
see also RTCA DO-181C paragraph 2.2.17.1.13c for coding
the resulting 7 byte string from RTCA DO-181C can be used, but without
the first byte (fixed 0x20). This gives 6 bytes finally

Altitude contains LSB first 16bit representation of 2's complement integer of
pressure altitude in 10ft steps. The negative value -101 must be used
for INVALID_ALTITUDE, due to missing or inaccurate altimeter data,

as determined by the altitude source

Message: EFIS to Transponder Message (HOST address 1)

Message ID: 6 Data length: 8 bytes

Byte Type Range / Value Units Description

0..1 octal 0-7777 Binary squawk code

2 byte See below Category/size code

3 byte 0-4, Bits 3-7 Transponder state

4...6 hex 0-$FFFFFF ICAO address 24 bits LSB first

7 byte 0-6, Bit 7 Aircraft Speed/ADSB in flag

This message must be send once per second. The transponder will be set to “OFF” or
“Standby” state if this message is not received for 4 seconds.

Binary squawk code is transmitted as octal, three bits per digit (0..7) for a total of 4 digits =
12 bits. Byte order is LSB first. Octal 1234 is transmitted as $9C $02.

Aircraft catergory and size code:
1 byte, made up as follows:
Bits 0-2: L/W code as per DO260B, 0-15.
Bits 3-7: Aircraft category as per DO260B, 0-31.

Aircraft Speed:
0=unknown, 1= vmax<=75kt, 2= 75kt<vmax<=150kt, 3= 150kt<vmax<=300kt,
4=300kt<vmax<=600kt, 5=600kt<vmax<=1200kt, 6=vmax>1200kt

ADSB-IN flag:
BIT-7 of Aircraft Speed must be set if system has ADSB-IN traffic display capability.

Transponder state:
0: Off
1: Standby
2: Ground
3: ON
4: ALT

Bits 3-7 are used as follows for messages ORIGINATING at the EFIS:

3 – On 0-1 transition transponder will be set to TX IDENT for 18 seconds.
4 – If “0” transponder is set to “On ground” mode. “1” is “ in flight. Note: This bit MUST be
set correctly for the relevant mode-s messages to be transmitted.
5 – 7 Not used.

Bits 3-7 are used as follows for messages ORIGINATING at the transponder:

3 – Set to 1 if a transponder reply occurred since the last ID 3 message sent, 0 otherwise
4 – Set to 1 if transponder failure (any failure reported by transponder itself)
5 – Set to 1 if transponder interface NOT receiving any data from transponder

6 – Set to 1 if IDENT is active
7 – if Mode S: If set to 1, at least 1 squitter was transmitted during last 0.5 seconds.
 If Mode C: Bit set to 0.

ALT may only be selected if altitude in message ID 1 is valid.

CAN messages for extended squitter (Mode-S transponders only)

Consists of three messages, must be sent once per second.

Message: EFIS to Transponder Message (HOST address 1)

Message ID: 7 Data length: 8 bytes

Byte Type Range / Value Units Description

0 byte 0 Message type

1 byte 0-3 GPS fix

2--3 word 0-3599 deg*10 Ground track

4--5 word 0-6553.5 Knots*10 Ground speed

6--7 word 0-65535 ft/5+1000 Height of geoid

Message: EFIS to Transponder Message (HOST address 1)

Message ID: 7 Data length: 8 bytes

Byte Type Range / Value Units Description

0 byte 1 Message type

1 byte 0-255 Number of satellites tracked

2 word 0-65535 ft/5+1000 Altitude HMSL

4--7 longint MGL POS Latitude

Message: EFIS to Transponder Message (HOST address 1)

Message ID: 7 Data length: 8 bytes

Byte Type Range / Value Units Description

0 byte 2 Message type

1--3 array - UTC hour:min:sec

4--7 longint MGL POS Longitude

MGL Position format: Integer 180000 = 1 degree of latitude or longitude. Negative is S or
W, positive is N or E.
UTC format is binary hour:minute:second. Hour is first byte, second is last byte.
Heights are in steps of 5ft plus 1000. “0ft” is thus 1000. “1000 ft” is 200. “-100 ft” is 980.
Speed is in tenth of a knot.
Heading is in tenth of a degree.

These messages are not acknowledged (other than the normal CAN message ACK).

Messages originating at the transponder (HOST ID 44 or 45)

Message ID 5 is identical to Message HOST ID 5 but sent by the transponder (current
state).
Message ID 6 is identical to Message HOST ID 6 but sent by the transponder (current
state). Note: Exception bits 3...7 of Transponder state.

Messages sent by the transponder are sent in reply to messages received by the
transponder. Should a message of either ID not be received by the transponder, the
transponder will time out and send a unsolicited reply message every 4 seconds for the
affected ID (which could include both IDs if not message is received).

ECB messages

Each of a possible 4 ECB units has 8 circuit breakers.
CAN addressing reserved is for 8 modules, 4 are used.

Message: ECB to EFIS Message (HOST address 1)

Message ID: 0 Data length: 2 bytes

Byte Type Range / Value Units Description

0 byte One bit per
breaker

LSB=breaker 1

Breaker states (1=on/0=off)

1 byte One bit per
breaker

LSB=breaker 1

Breaker tripped if 1

2 byte Breaker doubling info

3,4 word 0.1V ECB breaker input voltage

Message ID 0 is sent once every 4 seconds or whenever a breaker changes state.
Doubling info:
Bits 0 to 3, if a bit is set then the corresponding breakers are joined (applicable to breaker
pairs 0,1 2,3 4,5 and 7,8).
If bit 4 is set then breakers 1,2,3 are a triple. If bit 5 is set then breakers 6,7,8 are a triple.
If bit 6 is set then breakers 1,2,3,4 are a quad. If bit 7 is set then breakers 5,6,7,8 are a
quad.
Breaker doubling, tripling, quading is set via DIP switch on the ECB module.

Message: ECB to EFIS Message (HOST address 1)

Message ID: 1 Data length: 8 bytes

Byte Type Range / Value Units Description

0 byte 0.1A Breaker 1 current in 0.1A steps

1 byte 0.1A Breaker 2 current in 0.1A steps

1 byte 0.1A Breaker 3 current in 0.1A steps

1 byte 0.1A Breaker 4 current in 0.1A steps

1 byte 0.1A Breaker 5 current in 0.1A steps

1 byte 0.1A Breaker 6 current in 0.1A steps

1 byte 0.1A Breaker 7 current in 0.1A steps

1 byte 0.1A Breaker 8 current in 0.1A steps

Message ID 1 is send once per 4 second interval unless there is a change in one of the
current readings in which case the message is sent at an interval no less than 0.5 seconds
since the last message. In other words, this message is sent at intervals from 0.5 to 4
seconds depending on content changes.
Note: For doubled, tripled or quaded breakers, add the individual currents per breaker.

Message ID 2,3,4,5 is sent in response to a request for settings command

Message: ECB to EFIS Message (HOST address 1)

Message ID: 2 Data length: 8 bytes

Byte Type Range / Value Units Description

0 ... 1 word 0.1A Breaker 1 current in 0.1A steps

2 ... 3 word 0.1A Breaker 2 current in 0.1A steps

4 ... 5 word 0.1A Breaker 3 current in 0.1A steps

6 ... 7 word 0.1A Breaker 4 current in 0.1A steps

Message: ECB to EFIS Message (HOST address 1)

Message ID: 3 Data length: 8 bytes

Byte Type Range / Value Units Description

0 ... 1 word 0.1A Breaker 5 current in 0.1A steps

2 ... 3 word 0.1A Breaker 6 current in 0.1A steps

4 ... 5 word 0.1A Breaker 7 current in 0.1A steps

6 ... 7 word 0.1A Breaker 8 current in 0.1A steps

Message: ECB to EFIS Message (HOST address 1)

Message ID: 4 Data length: 8 bytes

Byte Type Range / Value Units Description

0 byte 0.1S Breaker 1 trip response time

1 byte 0.1S Breaker 2 trip response time

1 byte 0.1S Breaker 3 trip response time

1 byte 0.1S Breaker 4 trip response time

1 byte 0.1S Breaker 5 trip response time

1 byte 0.1S Breaker 6 trip response time

1 byte 0.1S Breaker 7 trip response time

1 byte 0.1S Breaker 8 trip response time

Message: ECB to EFIS Message (HOST address 1)

Message ID: 5 Data length: 8 bytes

Byte Type Range / Value Units Description

0 byte ECB Dipswitch reading

1 byte WIGWAG breakers EVEN

2 byte WIGWAG breakers ODD

3 byte 0.1S WIGWAG time (0.1 Second steps)

Touchpad messages

Message: TouchPad to EFIS Message (HOST address 1)

Message ID: 0 Data length: 4 bytes

Byte Type Range / Value Units Description

0...1 word X

2...3 word Y

Coordinates are send as whole numbers. Neither direction nor orientation are defined as
this will depend on mounting. EFIS contains a user calibration to set this and limits as
required.

Message: TouchPad to EFIS Message (HOST address 1)

Message ID: 0 Data length: 4 bytes

Byte Type Range / Value Units Description

0 Gesture

Gesture Types:

0x10 Single Tap

0x20 Double Tap

0x31 Swipe up

0x41 Swipe right

0x51 Swipe down

0x61 Swipe left

0x11 Tap and hold

0x32 Swipe up and hold

0x42 Swipe right and hold

0x52 Swipe down and hold

0x62 Swipe left and hold

iEFIS Extender messages
By default, the Extender uses its high speed data link to an EFIS and both CAN ports send
data received from this link and pass any received data to this link. The CAN messages
documented here are disabled. To enable them, send CAN message ID 10,11,12 or 13
(depending on CAN address set - “10” is the factory default for CAN address 64) and
function ID 0 (“set outputs”) as documented in the EFIS to device section of this document.
The Extender will then disable the high speed link and enable the CAN functionality
documented here.

The Extender will send the value of its analog inputs in two messages, each containing 4
readings. These messages are sent every 125mS if at least one value (in a group of 4)
has changed since the last transmission. If there is no change the next transmission will
follow 1 second after the last.

Message: iEFIS Extender to EFIS Message (HOST address 1)

Message ID: 0 Data length: 8 bytes

Byte Type Range / Value Units Description

0...1 word 0-4095 Analog input 1

2...3 word 0-4095 Analog input 2

4...5 word 0-4095 Analog input 3

6...7 word 0-4095 Analog input 4

Message: iEFIS Extender to EFIS Message (HOST address 1)

Message ID: 1 Data length: 8 bytes

Byte Type Range / Value Units Description

0...1 word 0-4095 Analog input 5

2...3 word 0-4095 Analog input 6

4...5 word 0-4095 Analog input 7

6...7 word 0-4095 Analog input 8

The temperature is sent as degrees C added with 128. A value of 128 thus means 0
degrees. 127 is -1 degree, 129 is +1 degree.

Supply voltage is 5.0-30.5V in steps of 0.1V (byte value 0-255).

Pressure sensor is raw ADC reading from sensor.

Ports status uses bits 0-4 for RS232 ports 1-5. If bit is set then port has been initialized via
setup message and is ready to operate.

Output states: Bits 0-4 reflect the status of the outputs 1-5. A “1” means the output is on.
Output is an open collector output meaning “1” is output transistor is switched on and
collector will be at ground level.

This message is sent at a rate of 125 mS unless there is no change to the data content in
which case retransmission may be delayed by up to 1 second.

Message: iEFIS Extender to EFIS Message (HOST address 1)

Message ID: 2 Data length: 6 bytes

Byte Type Range / Value Units Description

0...1 word 0-4095 Pressure sensor

2 byte Supply voltage (see above)

3 byte RS232 ports initialized status

4 byte Output states

5 byte Temperature (see above)

RS232 RX messages contain 1 to 8 bytes of received data on the relevant port.

Message: iEFIS Extender to EFIS Message (HOST address 1)

Message ID: 3 Data length: 1-8 bytes

Byte Type Range / Value Units Description

0...7 bytes RS232 RX port 1

Message: iEFIS Extender to EFIS Message (HOST address 1)

Message ID: 4 Data length: 1-8 bytes

Byte Type Range / Value Units Description

0...7 bytes RS232 RX port 2

Message: iEFIS Extender to EFIS Message (HOST address 1)

Message ID: 5 Data length: 1-8 bytes

Byte Type Range / Value Units Description

0...7 bytes RS232 RX port 3

Message: iEFIS Extender to EFIS Message (HOST address 1)

Message ID: 6 Data length: 1-8 bytes

Byte Type Range / Value Units Description

0...7 bytes RS232 RX port 4

Message: iEFIS Extender to EFIS Message (HOST address 1)

Message ID: 7 Data length: 1-8 bytes

Byte Type Range / Value Units Description

0...7 bytes RS232 RX port 5

Note: RS232 ports must be initialized (baudrate etc) before they will operate. You do this
using message ID 10 described in the EFIS to device messages section.

Appendix

Compass Tilt compensation

The SP-6/SP-7 combination can be used to implement a tilt compensated magnetic
compass. The SP-7 bank and pitch angles are used with the three raw magnetic readings
that have been compensated in the SP-6 for hard and soft iron distortions as well as offset
and gain errors. This results in a fairly trivial solution for a system that can be used to
derive correct magnetic heading during a banked turn and other aircraft manoeuvres.

The code presented here uses the bank and pitch angles from the SP-7 in a 0.1 degree
resolution format and returns the heading in a 0.1 degree resolution.
The code makes no use of floating point, only 32 bit integer arithmetic is required to suit
typical microcontrollers.

Missing from this code are SIN and COS routines which are left to the reader to
implement. Routines should accept angles in 0.1 degree resolution and return a result
from -65535 to +65535 (I.e. scaled as 16:16 fixed point). This can be done easily by
means of a precomputed lookup table.

var

 WMagARG,RawHeading: longint;

 EW,NS: longint;

//Fixed point 16:16 multiplication

function Mult(a,b: longint): longint;

begin

 result:=(int64(a)*int64(b)) div 65536;

end;

const
 ArcTanTable: array[0..46] of word = (
 0,17,35,52,70,87,105,123,141,158,
 176,194,213,231,249,268,287,306,325,344,
 364,384,404,424,445,466,488,510,532,554,
 577,601,625,649,675,700,727,754,781,810,
 839,869,900,933,966,1000,1036);

//Integer based fast ARCTAN2 function

function FArctan2(V1,V2: longint): longint;
var
 i,Quadrant: byte;
 neg: boolean;
 WTempLong,WMarg1,WMarg2,Ratio: longint;
begin
 Quadrant:=0;
 neg:=false;
 if V1<0 then
 begin
 Quadrant:=2;

 V1:=abs(V1);
 end;
 if V2<0 then
 begin
 Quadrant:=Quadrant or 1;
 V2:=abs(V2);
 end;
 if V1>V2 then
 begin
 Ratio:=V1;
 V1:=V2;
 V2:=Ratio;
 Neg:=true;
 end;
 Ratio:=V1*1000 div V2;
 i:=0;
 WTempLong:=ArcTanTable[0];
 while (Ratio>WTempLong) and (i<45) do
 begin
 inc(i);
 WTempLong:=ArcTanTable[i];
 end;
 WMarg1:=ArcTanTable[i+1]-WTempLong;
 WMarg2:=WTempLong-Ratio;
 if WMarg2>0 then
 begin
 WMarg2:=WMarg2 shl 16; //mult by 65536
 WMarg2:=WMarg2 div WMarg1;
 end;
 WMarg1:=i shl 16;
 WMarg2:=WMarg1-WMarg2;
 if neg then WMarg2:=5898240-WMarg2;
 case quadrant of
 0: result:=WMarg2;
 1: result:=11796480-WMarg2;
 2: result:=-WMarg2;
 3: result:=-(11796480-WMarg2);
 end;
end;

//returns heading in variable “Angle”
//Note that on entry “Angle” is set to the SP-6 accelerometer based tilt compensated
//heading divided by 10 (I.e. in 0.1 degree resolution.

procedure TiltCompensateCompass(var Angle: longint);
var
 MagPitch,MagBank,WTempLong,Heading: longint;
begin
 MagPitch:=RawPitchAngle; //pitch and bank from AHRS in 0.1 degrees
 MagBank:=-RawBankAngle; //note sign reversal
 WMagARG:=icos(MagPitch);
 NS:=Mult(MagRawX,WMagARG);

 WMagARG:=isin(MagBank);
 WTempLong:=Mult(MagRawY,WMagArg);
 WMagARG:=isin(MagPitch);
 NS:=NS+Mult(WTempLong,WMagArg);
 WMagARG:=icos(MagBank);
 WTempLong:=Mult(MagRawZ,WMagArg);
 WMagARG:=isin(MagPitch);
 NS:=NS-Mult(WTempLong,WMagArg);

 WMagARG:=icos(MagBank);
 EW:=Mult(MagRawY,WMagARG);
 WMagARG:=isin(MagBank);
 EW:=EW+Mult(MagRawZ,WMagARG);
 Heading:=(Farctan2(EW,-NS));
 if Heading<0 then Heading:=Heading+23592960;
 if Heading>=23592960 then Heading:=Heading-23592960;
 Heading:=Heading div 6554;

 //We now have heading derived from mag sensor X/Y/Z

{The following code averages compass accelerometer based tilt compensation with that
derived from the above calculation for angles up to 15 degrees of bank with the ratios
dependent on the angle. This allows a good changeover between non-accelerated (but
very accurate) and accelerated flight regime. The premiss here is that often the AHRS and
compass are not mounted on the exact same plane and this results in better accuracy of
the accelerometer based solution (done inside the compass) in straight and level flight.
This is considered optional.)

 if abs(MagBank)<=150 then
 begin
 if (heading<900) and (Angle>2700) then
 begin
 Angle:=Angle-3600;
 end else
 if (heading>2700) and (Angle<900) then
 begin
 Heading:=Heading-3600;
 end;
 f1:=abs(MagBank);
 f2:=150-f1;
 heading:=(Heading*f1) + (Angle * f2);
 Heading:=heading div 150;
 if heading>3599 then heading:=heading-3600 else
 if heading<0 then heading:=heading+3600;
 end;

 //return the result
 Angle:=Heading;
end;

	Messages from devices to Host (EFIS)
	Touchpad messages
	iEFIS Extender messages
	Appendix
	Compass Tilt compensation

